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SUMMARY

The last decade has witnessed a vigorous and sustained research effort on unstructured methods for

computational fluid dynamics. Unstructured mesh generators and flow solvers have evolved to the point

where they are now in use for design purposes throughout the aerospace industry. In this paper we survey

the various mesh types, structured as well as unstructured, and examine their relative strengths and

weaknesses. We argue that unstructured methodology does offer the best prospect for the next generation

of computational fluid dynamics algorithms.

INTRODUCTION

Mesh generation has long been recognized as a major pacing item in computational fluid dynamics.

But over the last decade, it has rapidly evolved into a broadly based area of research. Early meshes were

almost exclusively quadrilateral or hexahedral, and were typically created by defining a suitable coordinate

transformation from a unit square, or unit cube, into the physical domain. In this manner, one can create

the familiar O, H and C-meshes around airfoils, wings and wing/fuselage combinations. These meshes

inevitably possess a high degree of structure or regularity on account of their well defined set of coordinate

directions. Regularity that is inherent in a structured mesh can, however, be a serious drawback when

generating a mesh to conform with all boundaries of the domain. By the end of the seventies, it had

become quite clear that this approach would not, by itself, suffice to handle complex configurations.

The formidable challenge presented by complex geometry has been met in various ways. The use of non-

aligned meshes (ref. 31) circumvents the problem of conforming with boundaries at the cost of requiring

interpolation formulae to impose the boundary conditions. A series of separate overlayed meshes, each of

which conforms to the surface, represents an alternative approach that lifts the burden of interpolation

from the boundaries to the flow domain (refs. 5 and 27).

To avoid interpolation issues, it is necessary to create a mesh that conforms with all boundaries and

also maintains contiguity of meshlines. In the case of hexahedral meshes, this is best achieved by a multi-

block technique which splits the flowfield into a number of blocks or subdomains (refs. 11, 17, 35 and 36).

The splitting is chosen so that each subdomain can be covered by a structured hexahedral mesh with an

associated set of coordinate directions. In general, the orientation of neighboring blocks will differ and the
associated coordinate lines cannot be extended across block boundaries. A multi-block mesh can thus be

thought of as structured at the level of an individual block, but unstructured when viewed globally as a

collection of blocks. The introduction of paving techniques (refs. 6 and 39) takes this process one step

further and generates a hexahedral mesh that can be thought of as entirely unstructured. In fact, one can

interpret such a mesh as a multi-block mesh whose blocks are the individual hexahedra.

Triangular or tetrahedral meshes were for a long time the preserve of those in the finite element

community. They were of little more than passing interest to developers of the finite difference and finite

volume methods that were the main staple of research into computational fluid dynamics. The recent

intense interest in tetrahedral meshes (refs. 1, 12, 18, 28, 37 and 38) and flow solvers is, however, an
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acknowlegmentof their utility and the relativeeasewith whichtetrahedralmeshescanbegeneratedfor
complexshapes.Theexampleshownin figure1,of the flowsolutionovera supersonictransport,is typical
of the typeof problemthat is nowroutinelyhandledby tetrahedralbasedmethods(refs.8 and 14).

In this paperwe reviewthe strengthsandweaknessesof differentmeshtypesin terms of easemesh
generationandthe implicationsfor flowalgorithms.In particular,weconsiderthe issuesof flowadaption
and viscouscalculations.Both of theseconcernsmustaddressedto ensureaccurateandreliablesolutions
for almostany fluid dynamicsproblem.On the basisof theseconsiderations,wearguethat unstructured
meshes,usingtetrahedraor a mixtureof tetrahedraand prisms,do offerthe bestprospectfor the next
generationof computationalfluid dynamicssoftware.

A TAXONOMY OF MESHES

Thechallengeof generatingmeshesfor complexconfigurationshasencouragedseveralinnovativeideas
for meshesbasedonhexahedra,tetrahedraaswellashybridmeshtypes.Traditionally,theterm structured
hasbeenassociatedwith hexahedralmeshesonaccountof theregularitythat is inherentin anyhexahedral
meshwith a welldefinedsetof coordinatedirections.Sincenoglobalcoordinatescanbeassociatedwith
a tetrahedralmesh,it wasthereforenatural to refer to theseasunstructuredmeshes.

It is certainlyapparentthat a multi-blockmeshis usuallyonly structuredat the blocklevel.Onecan
imagineincreasingthe numberof blocksuntil eachblockdegeneratesinto a singlehexahedronandone
hasa fully unstructuredhexahedralmesh.Examplesof unstructuredhexahedralmeshesare thosethat
aretypically producedby pavingtechniques(refs.6 and39). Likewise,a hexahedralmeshthat undergoes
meshenrichment(ref. 10),with the consequentadditionof extra pointson cell facesand edges,canno
longerbe thought of as structured. Indeed,flow solversfor suchmeshesrely on pointersand indirect
addressing,andmustthusmaintainadatastructuresimiliarto that of atetrahedralflowsolver.Themore
natural subdivisionof meshtypesis thereforeinto hexahedral,tetrahedraland hybrid (i.e. thoseusing
a mixture of elementtypes). The adjectives"structured" and"unstructured"moreproperlyrefer to the
degreeof regularitywhosepresencecanbediscernedby a locallywelldefinedsetof coordinatedirections.

Amonghexahedralmeshesthereis a widerangefrom singleblock,structuredto completelyunstruc-
tured. In betweentheseextremesare (i) the multi-blockmesheswhichcanbe further subdividedinto
thosewith contiguousblocksandthosewhoseblocksareoverlayed(refs. 5 and 27),and (ii) non-aligned
(i.e. non-boundaryconforming)meshes(ref. 31). Contiguousmulti-blockmeshescan be further subdi-
vided into compositeor patched,accordingto whetheror not the meshlinesarecontinuousacrossblock
boundaries.Finally, the hybridmeshesincludeboth mixedtetrahedral/hexahedral(refs. 26and 33)and
tetrahedral/prismatic(refs. 16and25),aswellastheCartesianmeshes(refs.9, 15,23and32)whosecells
aremostlyhexahedra,but with somecellsconsistingof variouslyshapedpolyhedrain regionsadjacentto
the domainboundaries.An attempt to catalogthesemeshtypesis shownin figure2.

TRIANGULATION TECHNIQUES

Thereare threemain approachesto tetrahedralmeshgeneration,(i) octreedecomposition,(ii) Delau-
naybasedmethods,and (iii) movingfront techniques.A brief outlineof the differencesbetweenthese
approachesfollows.

Octree Decomposition

In two dimensionsthis procedurecanbe viewedas a divisionof the flowfield into a collectionof
rectanglesfollowedby a divisionof rectanglesinto triangles. Rectanglescanbe further subdividedinto
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four newrectangles,correspondingto the additionof anextravertexat the mid-pointof eachsideof the
original rectangle.For rectangleswhich intersectthe boundary,this subdivisioncanbe repeateduntil a
sufficientlyfine resolutionhasbeenachieved.The first divisionof the flowfieldinto rectanglesmay be
regardedas levelzero, the subsequentdivisionas level 1 and so on. Thus the final meshwill contain
rectanglesat levelzeroin the flowfieldand highly refinedrectanglesin the vicinity of solid boundaries.
Somedegreeof graduationin themeshrefinementisobtainedby requiringadjacentrectanglesto differby
nomorethanonelevelof subdivision.

The next stageconsistsof examiningthoserectangleswhich intersectthe boundariesand replacing
eachsuchrectangleby a polygonconsistingof that part of the rectanglelying in the flowfieldtogether
with the part of the solidboundarythat lies insidethe rectangle.After this cutting procedurehasbeen
applied,the meshconsistsof a combinationof rectanglesin theflowfieldtogetherwith polygonsadjacent
to theboundaries.This meshcouldserveasaCartesian mesh. Alternatively, the rectangles and boundary

polygons could be further subdivided into triangles to provide a triangulation of the flowfield.

The concept generalizes in an obvious way to three dimensions, although the cutting procedure at

the boundaries becomes much more complicated (refs. 34 and 38). The main drawback of this approach,

however, is the inability to match a prescribed surface triangulation. In addition, since each surface triangle

arises from the intersection of a hexahedron with the boundary, it is not clear how one can control the

variation in triangle size and shape.

Delaunay Methods

The Delaunay triangulation provides a sound framework for tetrahedral mesh generation and several

Delaunay based methods have been developed. Many of these methods (refs. 1, 12, 21, 29 and 37) exploit

an incremental algorithm that starts with an initial triangulation of just a few points. The complete

triangulation is generated by introducing a point and locally reconstructing the triangulation after each

point insertion. Incremental algorithms can be used equally well for both the initial mesh algorithm and

for any further enrichment that may be required by solution adaptive refinement. A particularly attractive

feature of this approach is the opportunity to place new points at specified locations with the object of

retaining, and in many cases improving, the quality of the mesh. Recent work in this area has produced

encouraging results (refs. 3, 4, 29 and 37) showing that mesh quality can be controlled and meshes created

to achieve a guaranteed level of quality according to a suitable set of criteria. Figure 3a shows an initial

triangulation of a complex planar domain; figure 3b shows the result after selective refinement of this mesh

by the so called Voronoi segment method (refs. 4 and 29).

The main difficulty, for any Delaunay method, is the need to ensure surface integrity. This usually

requires the triangulation near the surface to be altered in some way by overriding the Delaunay algorithm.

Most methods triangulate the entire domain, extracting the surface triangulation afterward. One possibility

is to insert the surface points first, identify the tetrahedra which make up the object and then insert the

flowfield points so that no flagged tetrahedra are removed (refs. 1 and 2). Other methods (refs. 12 and

37) allow the volume triangulation to proceed unchecked and then re-establish the surface edges and faces

by a series of edge/face swaps and the occasional introduction of an extra point.

Moving Front Methods

The main virtue of this approach (refs. 18 and 28) is that it starts from a prescribed boundary

triangulation which remains intact throughout the mesh generation process. The boundary triangulation

is regarded as a front on which a new layer of tetrahedra is built. As a result, the original front triangles
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becomeinterior facesof themeshanda newsetof front facesiscreated.The algorithmcontinuesto build
tetrahedraon the newfront, growingmoretetrahedrauntil theentiredomainhasbeenfilled. A particular
difficultyof this methodoccursin theclosingstagesof the procedurewhenthe front is foldingin on itself
andthe final vestigesof emptyspacearereplacedby tetrahedra.It is clearlynecessary,in thefinal stages,
to maintaingoodcontroloverthe sizeof thefront facesaswellastheshapeof the unfilleddomainthat is
left.

MESH IMPLICATIONS FOR FLOW ALGORITHMS

Singleblockstructuredmeshes,whichdominatedtheearlydevelopmentof computationalfluid dynam-
ics,arewellsuitedto exploitationby implicit algorithms(e.g.AlternatingDirectionImplicit methods)as
wellasmappingeasilyontovectorcomputerarchitectires.Thelater developmentof unstructuredmeshes
forcesa reappraisalof this situation and there is a consequentneedfor algorithmswhich work well on
unstructuredmeshes.In fact, an explicit methodappearsto be the natural choicefor solvingthe flow
equationsonan unstructuredmeshand the availabilityof veryefficientmultigrid techniquesremovesthe
otherwiseseriousrestrictionof anexplicit timestepstability limit.

Evenso, there is an overheadfor the computationalwork associatedwith tetrahedralmethods. A
tetrahedralmeshof N pointshasroughly6Ncells,12Nfacesand7Nedges.Thefluxescan be accumulated

either across faces, or alternatively, along edges. For tetrahedral meshes there is an obvious advantage in

operation count to exploit edge based data structures. A mesh of hexahedra has roughly N cells, 3N faces

and 3N edges, so that the operation count is comparable whether fluxes are accumulated across faces or

along edges. Either way there is still a clear 2:1 advantage in computational efficiency for a hexahedral
flow solver over a tetrahedral flow solver using an edge based data structure on meshes with the same

number of points. This leaves open the question of whether comparable accuracy can be achieved on a

tetrahedral mesh with fewer points. For a simple shape (e.g. a wing) with an optimal mesh distribution,

one would expect comparable accuracy from both mesh types for a similar number of mesh points. For

a more complex shape, the regularity inherent in a structured mesh can often lead to an unnecessary
refinement in areas far removed from the boundary. In such cases, there is an inefficient distribution in

the structured mesh with the possibility that comparable accuracy could be achieved on an unstructured

mesh with fewer points. The relative advantage in computational efficiency that is enjoyed by structured

methods is therefore not excessive.

In order to attain an optimal use of computer resources, some rearrangement and pre-sorting of a

tetrahedral mesh is necessary. For any given tetrahedral cell, the addresses of its forming points may

occupy widely separated positions in memory. This feature will cause a severe degradation on computers

that depend on a small high speed memory cache. In addition, it is necessary to employ indirect addressing,
with the result that each point will be referenced every time it appears as the vertex of a cell. Since many

cells are incident at a given mesh point, each point will be referenced several times, and the possibility of

vector dependency will inhibit vectorization by the compiler. It is possible to overcome this problem by

first sorting the cells into groups so that no point is referenced more than once in each group. On can then

override the compiler and force vectorization.

A recursive bi-section procedure can efficiently decompose a mesh into any number of sub-domains with

almost identical numbers of cells and edges. This provides a particularly convenient decomposition of the

mesh for parallel computer architectures (refs. 7 and 14). Further re-addressing and sorting within each
subdomain leads to efficient vectorization and cache use on each of the individual processors.
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For a structuredmulti-block mesh,it is usuallynecessaryto assignwholeblocks to an individual

processors. Since individual blocks may vary greatly in size, this means that one processor may be assigned

to one block while another processor is assigned to several small blocks. It is difficult in this situation to

achieve very good load balancing and some compromise in parallel performance can be expected. In

contrast, the subdivision of an unstructured mesh maps very readily onto a parallel architecture with

nearly perfect load balancing.

An example of the parallel efficiency that can be achieved is shown in figure 4. The figure presents

results of running an unstructured flow solver with a tetrahedral mesh on an IBM SP2 parallel system (ref.

14). There is almost perfect scalability for up to 64 processors.

ADAPTIVE REFINEMENT

The use of p-refinement which increases the accuracy of the discrete approximation is particularly

effective for elliptic problems where a high degree of smoothness is expected. For problems involving dis-

continuities and sharply defined features, the use of mesh movement (r-refinement) or mesh enrichment

(h-refinement) appears to be more suitable. Mesh movement has the virtue of leaving the mesh size and con-

nectivity intact. Thus, a partition of the mesh into subdomains remains well balanced and re-partitioning

of the mesh is not required. However, the movement or repositioning of mesh points inevitably reduces the

definition in some parts of the domain in order to increase the resolution elsewhere. Furthermore, moving

mesh lines is an inherently perilous procedure and special care must be taken to avoid overlapping of mesh

lines and the appearance of cells with negative volume.

The remaining alternative, mesh enrichment, is particularly attractive since the mesh is altered only

in the region where greater resolution is needed. For a parallel implementation of the flow algorithm,

this requires a new partitioning of the mesh to maintain good load balancing. The computational cost of

re-partitioning and sorting will therefore influence how often the mesh should be refined over the course of
a calculation.

For a hexahedral mesh, the application of mesh enrichment (refs. 9, 10 and 15) introduces new points

on the edges and faces as well as the center of a hexahedron. At the interface between a refined cell

and a non-refined cell, four refined faces will abut a non-refined cell face. This upsets the regularity of

a structured mesh and imposes alterations (e.g. the use of pointers and indirect addressing) on the flow

solver, causing the flow algorithm data structure to closely resemble that of a tetrahedral based flow solver.

For a triangular or tetrahedral mesh, the triangulation that results from mesh enrichment (refs. 19,
21 and 24) will consist of a new collection of triangles or tetrahedra. In this case, no modification of the

flow solver is needed and a tetrahedral mesh thus provides a natural setting for mesh enrichment. This

characteristic is one of the key advantages of an unstructured, and more particularly, a tetrahedral based
method.

There are two main approaches to mesh enrichment. Edge bisection (ref. 19) (i.e. adding new mesh

points at the mid-points of the edges of candidate tetrahedra) leads to refined cells of the same aspect

ratio as the original cell. This method is simple to implement and can be applied to any triangular or

tetrahedral mesh. However, although it preserves cell aspect ratio, addition of new points in this manner

will not improve the mesh quality if the original mesh is extremely coarse with several bad aspect ratio

cells. An alternative approach, as mentioned above, is available with a Delaunay based method (refs. 4, 21

and 24). The insertion of new points at specified locations and re-triangulation by a Delannay algorithm

provides a great deal of flexibility and control over mesh quality.
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NAVIER STOKES MESHES

There is ample empirical evidence to show that solutions of the Euler equations for inviscid flow can

be carried out to a high degree of accuracy on a tetrahedral mesh. However, there is still considerable

debate as to whether high aspect ratio triangular, or tetrahedral, cells can properly resolve a shear layer.

In other words, can the Reynolds averaged Navier Stokes equations be solved with sufficient accuracy on

a tetrahedral mesh?

It is known that the truncation error of a finite volume discretization depends on the shape of the

control volume. In particular, a trapezoidal approximation for a cell vertex method though nominally

second order, becomes only first order accurate unless the control volume possesses central symmetry (ref.

30). The effect is localized and it appears that the global solution error remains second order (ref. 13). For

the Euler equations, the possible loss of second order accuracy in truncation error does not appear to be

a serious problem. However, it is most likely that this will pose a serious problem when trying to resolve

a boundary layer flow.

The control volume associated with a given point P corresponds to the boundary of the collection of

cells incident at point P. In the planar case, the cells are triangles and the control volume is the polygon

formed by the edges opposite P (figure 5). In three dimensions, the cells are tetrahedra and the control

volume is the polyhedron formed by the faces opposite P. Although it is very difficult to ensure central

symmetry, a good quality mesh should be close enough to this ideal for there to be little degradation in

truncation error. In particular, this should be the case for an isotropic distribution of mesh points with

low aspect ratio cells.

In the case of a highly stretched mesh, it is much more difficult to maintain a control volume that

has nearly central symmetry. It seems plausible that one way to come close to this ideal, is to use a high

degree of structure in the mesh. Thus, in a boundary layer, one could insert points normal to the surface,

just as one does for a structured mesh. In two dimensions these points could be connected to form right

triangles (see figures 5 and 6). The surface curvature would cause the "right angles" to be slightly greater
or less than 90 °, but for a continuously turning surface these deviations would be small. When the surface

tangent is discontinuous, however, special treatment is needed. At a trailing edge, for example, a wake

region of similarly constructed cells should be inserted. At a re-entrant corner, the thin layer Navier Stokes

assumption breaks down and an isotropic mesh distribution is then appropriate.

The requirement of central symmetry imposes rigid constraints on the triangle connectivity. Figure 5

shows that central symmetry of the control volume occurs when the hypotenuse of each right triangle is
oriented in the same direction. In figure 7, one of the diagonals has switched direction and the control

volume is no longer centrally symmetric.

In three dimensions this issue becomes more problematic and it is unlikely that central symmetry of

control volumes can be properly assured. However, it again seems plausible that a carefully constructed

mesh of tetrahedra, each with three mutually orthogonal faces, is most likely to approach this ideal. Work

along these lines has been presented by Pirzadeh (ref. 28) for the moving front method and by Marchant

and Weatherill (ref. 20) and Marcum (ref. 22) for Delaunay based methods.

It remains to be seen whether accurate solutions of shear layer flows can be obtained for the Reynolds

numbers of interest on meshes composed entirely of triangles or tetrahedra. An alternative approach is

the use of a hybrid mesh. For example, one could use a quadrilateral, or hexahedral, mesh close to the

surface and change to an unstructured mesh outside the viscous region. The disadvantage of this remedy
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is that oneis againfacedwith mostof the restrictionsthat arisewith structuredmeshes.Anotherversion
of thehybrid meshthat offersmoreof the flexibilityonelooksfor in anunstructuredmethod,is provided
by usingprismsin theboundarylayerregion.Workin thisareahasbeenpioneeredby Nakahashi(ref. 25)
and more recently by Kalinderis et al (ref. 16). There are still some disadvantages to this approach; the

use of two different cell types complicates the flow solver and mesh adaption no longer has the simplicity

available on purely tetrahedral meshes. However, this may be the price that one has to pay in order to
obtain highly accurate Navier Stokes solutions.

FUTURE DIRECTIONS

In assessing the current status of mesh generation methods and future developments, it seems likely that
there will be an increasing emphasis on two key requirements. First, there is a strong drive towards methods

that are easy to use and reliable (i.e. user friendly). Second, there is an increasing expectation that the

computational results should be accurate, ideally to within some known tolerance. As improved computer

hardware opens up the opportunity to attack increasingly complex problems, an effective response to both

of these issues will become even more urgent.

Although often regarded as a separate entity, it is important to remember that the mesh generator is

a central part of the computational environment, interfacing on one side (through the CAD system) with

the surface definition of the geometry, and on the other side with the flow solver. The quality of the mesh

directly influences the quality of the solution, unfortunately in ways that are usually difficult to quantify.
Mesh quality in the volume mesh can be related to cell aspect ratio and size variation. But there is also the

question of the degree to which the surface mesh matches the true surface. Surface definition is therefore

an important concern. It is clear that the interface between a surface mesh generator and the CAD system

should preserve the surface definition. However, it is also necessary to ensure that the CAD description is

sufficiently well defined to meet the needs of aerodynamic flow calculations. For example, it is often the

case that a CAD definition is provided by a series of patches which do not always abut correctly at their
joins. Furthermore, for Navier Stokes computations, small perturbations in the surface definition could

easily project a significant way into the boundary layer, wreaking havoc on a Navier Stokes mesh and the

resulting flow prediction.

It is therefore necessary to (i) quantify the quality of the underlying surface, placing tolerances on
what deviations are acceptable, (ii) obtain measures of how well a surface mesh matches the true surface

definition, and (iii) generate a volume mesh that conforms to the surface mesh and meets a set of previously
defined mesh quality measures. It is important that adaptive refinement should be carried out without

the need for any user intervention. Moreover, the refined mesh should also meet the same mesh quality
measures that are required for the original mesh.

In order to put together a seamless, user friendly software environment, a high degree of modularity

with clean interfaces between each software module is desirable. First, one requires a link between the

CAD system and the surface mesh generator. It is likely that the interface will need to carry out checks

on the CAD surface definition, and possibly process the CAD data to obtain a surface description that

meets the stringent requirements for computational aerodynamics. The surface mesh generator will require

some input from the user to define the mesh density, perhaps to the extent of defining surface patches and

indicating which parts of the surface require high resolution. However, the generation of the surface

mesh to a specified quality, in terms of mesh aspect ratio and size variation, should be handled entirely

automatically. It would appear that surface mesh generation can be carried out with comparable ease for
either quadrilateral or triangular elements.
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The volumemeshgeneratorshouldcreatea mesh,entirelyautomatically,that matchesthe prescribed
surfacemesh.It is theopinionof the authorthat easeof volumemeshgenerationandadaptiverefinement
arekeyadvantagesthat will continueto favortetrahedralmeshesovertheir hexahedralcounterparts.For
NavierStokescomputations,however,it is quitepossiblethat somecompromisemustbemadeandtetra-
hedralelementswill not be ableto capturethe featuresof shearlayerswith sufficientaccuracy.The most
promisingcombinationin this casewouldbetheuseof a prismaticmeshin theshearlayerwith tetrahedra
elsewhere.It seemslikely,however,that purelytetrahedralmesheswill beusedin thenearterm for Navier
Stokescalculations,sincetetrahedralmeshgenerationhasadvancedto a high degreeof automation. In
the longerterm, the demandfor high accuracywill probablydrive the developmentof methodsbasedon
a combinationof prismsandtetrahedrafor threedimensionalNavierStokescomputations.
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Figure 1.-Surface Pressure Contours of the Flow Solution for a

Supersonic Transport, M_ = 2.4, a = 3.6 °
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Figure 3a.-Delaunay Triangulation of the Boundary Points

Figure 3b.-Delaunay Triangulation of the Interior of the Domain Using Selective Refinement
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Figure 4.-Parallel Efficiency of an Airplane Code on the IBM SP2 Parallel System

Figure 5.-Control Volume for Point P has Central Symmetry

286



Figure 6.-Triangulation of an Airfoil/Slat Region Suitable for Viscous Computation

Figure 7.-Control Volume for Point P does not have Central Symmetry
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